## PHASE EQUILIBRIUM IN THE SYSTEM Na5P3O10-Na8La2(PO3)8O3

## J. Kropiwnicka

# DEPARTMENT OF INORGANIC CHEMISTRY, ACADEMY OF ECONOMICS, WROCLAW, POLAND

(Received March 23, 1989)

The phase diagram NasLa2(PO3) $\otimes$ O3-NasP3O10, which comprises part of the ternary system La2O3-Na2O-P2O5, was constructed in the laboratory. The oxyphosphate NasLa2(PO3) $\otimes$ O3 crystallizes in the orthorombic system; the lattice parameters are as follows a = 8.96(4)Å, b = 9.35(8)Å, c = 12.29(7)Å.

A great number of rare-earth compounds exhibit fluorescence, in different light ranges, and display very good laser properties [1-3]. Fluorescence effects are observed in a stoichiometric compound with a high concentration of active  $Eu^{3+}$  and  $Nd^{3+}$  in the rare-earth pentaphosphates.

Investigations on the binary system Na<sub>2</sub>O-P<sub>2</sub>O<sub>5</sub> were first made many years ago, and primarily revealed polyphosphates. Papers [4-6] report that only one sodium polyphosphate occurs, with the formula Na<sub>5</sub>P<sub>3</sub>O. The binary system Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>-NaPO<sub>3</sub> has been examined by numerous authors [7-10]. Berak *et al.* confirmed the existence of Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub> in this range, which melts incogruently at 620° and occurs in two polymorphic modifications at  $529^{\circ}$ . The oxyphosphate Na<sub>8</sub>La<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>O<sub>3</sub> was synthesized for the first time by Kropiwnicka [12].

The product is characterized by polimorphic  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\delta$  phases with the following transition temperatures: 570-540°, 400°, 280° and congruent

\*Present address of the author : "Glass-Art" Cooperative Work, 50-238 Wroclaw, ul. Niemcewicza 32, Poland

> John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

melting at  $774^{\circ}$  [11]. The solid phases in the equilibrium system Na<sub>2</sub>O-P<sub>2</sub>O<sub>5</sub>-H<sub>2</sub>O near 300<sup>o</sup> have been reported by Taylor *et al.* [12].

### Experimental

The starting materials were: sodium metaphosphate NaPO<sub>3</sub>, oxide La<sub>2</sub>O<sub>3</sub> 99.9% (USSR) and sodium pyrophosphate Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>. The oxyphosphate Na<sub>8</sub>La<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>O<sub>3</sub> was obtained by synthesis in a solid-state reaction. The stoichiometric mixture of La<sub>2</sub>O<sub>3</sub> and NaPO<sub>3</sub> was ground in an agate mortar, pressed into pellets and heated in air in the interval 400-600° for 8 hours.



Fig.1 Phase diagram of the system NasLa2(PO3)8O3-NasP3O10 0 - thermal analysis

J.Thermal Anal., 36, 1990

| $d \exp. (x \ 10^{-1} \ nm)$ | d calc.(x 10 <sup>-1</sup> nm) | hkl |
|------------------------------|--------------------------------|-----|
| 4.461                        | 4.482                          | 200 |
| -                            | 4.458                          | 112 |
| 3.723                        | 3.723                          | 022 |
| -                            | 3.727                          | 103 |
| 3.463                        | 3.438                          | 122 |
| -                            | 3.463                          | 113 |
| 3.232                        | 3.236                          | 220 |
| 3.122                        | 3.119                          | 030 |
| -                            | 3.130                          | 221 |
| 3.016                        | 3.023                          | 031 |
| -                            | 3.024                          | 203 |
| 2,692                        | 2.687                          | 302 |
| 2.535                        | 2.540                          | 223 |
| -                            | 2.535                          | 204 |
| 2.263                        | 2.263                          | 140 |
| 2.203                        | 2.204                          | 401 |
| 2.035                        | 2.036                          | 332 |
| -                            | 2.032                          | 043 |
| 1.954                        | 1.958                          | 225 |
| -                            | 1.953                          | 116 |
| 1.929                        | 1.931                          | 035 |
| 1.851                        | 1.850                          | 051 |
| -                            | 1.850                          | 243 |
| 1.810                        | 1.812                          | 151 |
| -                            | 1.812                          | 423 |
| -                            | 1.810                          | 404 |
| 1.790                        | 1.792                          | 500 |
| -                            | 1.790                          | 052 |
| 1.778                        | 1.778                          | 414 |
| 1.745                        | 1.743                          | 511 |
| -                            | 1.745                          | 432 |
| 1.721                        | 1.721                          | 502 |
| -                            | 1.719                          | 244 |
| -                            | 1.723                          | 107 |
| 1.692                        | 1.692                          | 512 |
| -                            | 1.695                          | 045 |
| -                            | 1.690                          | 306 |
| -                            | 1.695                          | 117 |

Table 1 Powder diffraction data on the low-temperature NasLa2(PO3)8O3 phase

| d exp. (x10 <sup>-1</sup> nm) | $d \operatorname{calc.}(x10^{-1} \operatorname{nm})$ | hkl |
|-------------------------------|------------------------------------------------------|-----|
| 1.664                         | 1.662                                                | 252 |
| -                             | 1.663                                                | 433 |
| -                             | 1.665                                                | 145 |
| -                             | 1.663                                                | 316 |
| 1.645                         | 1.642                                                | 503 |
| -                             | 1.644                                                | 027 |
| 1.605                         | 1.604                                                | 441 |
| 1.574                         | 1.573                                                | 351 |
| -                             | 1.573                                                | 154 |
| 1.512                         | 1.511                                                | 062 |
| -                             | 1.512                                                | 406 |
| -                             | 1.514                                                | 307 |
| 1.505                         | 1.507                                                | 532 |
| -                             | 1.505                                                | 443 |
| -                             | 1.505                                                | 254 |

Table 1 cont.

orthorhombic system; a = 8.96(4)Å, b = 9.35(8)Å, c = 12.29(7)Å

The powder of La<sub>2</sub>O<sub>3</sub> was calcined at  $900^{\circ}$  typically for 2 days before weighing. The polyphosphate Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub> was synthesized from NaPO<sub>3</sub> and Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub> in 1:1 stoichiometric molar ratio in two stages:

1. at 250° for 2 hours;

2. at 400° for 5 hours.

The oxyphosphate  $Na_8La_2(PO_3)_8O_3$  [12] was also used as a starting material. Samples in the binary system were synthesized by the reaction between  $Na_8La_2(PO_3)_8O_3$  and  $Na_5P_3O_{10}$  at  $500^{\circ}$  for 6 hours in an open platinum and gold crucible.

Temperature was measured with a Pt/PtRh<sub>10</sub> thermocouple, calibrated against the solidification point of K<sub>2</sub>SO<sub>4</sub> (1076°). In thermal studies involving heating, MOM 3427 derivatograph was used with photographic recording over the temperature range from 20 to  $1000^{\circ}$ . The operating conditions used were as follos: sensitivity TG 500 mg, DTA-1/5, DTG-1/10, heating rate 10 deg/min. Al<sub>2</sub>O<sub>3</sub> was used as a reference material. In the thermal studies involving cooling, an LP 839 temperature programmer (Chinoin Budapest) was used. The rate of cooling was 10 deg/h. Infrared absorption data were obtained with a Specord IR 75 instrument (University of Wroclaw). The samples were pressed in KBr pellets. No pyrophosphate or ortophosphate impurity could be detected.

Unit cell parameters for Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub> and Na<sub>8</sub>La<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>O<sub>3</sub> were determined from Guinier photographs, taken with CuK $\alpha$  radiation (mean  $\lambda = 1.5418$ Å). Intensities were estimated visually.

#### **Results and discussion**

The purpose of this work is to report an unknown pseudobinary system  $Na_8La_2(PO_3)_8O_3$ - $Na_5P_3O_{10}$  and to present X-ray powder diffraction data on sodium-lanthanum phosphates. The phase diagram of the system  $Na_8La_2(PO_3)_8O_3$ - $Na_5P_3O_{10}$  is shown in Fig. 1.

 $Na_5P_3O_{10}$  forms incongruently in the system  $Na_4P_2O_7$ - $NaPO_3$  and melts incongruently in this system at  $620^{\circ}$  (see also [10]). In the pseudobinary system, we deal with the ternary peritectic reaction:

 $C + \alpha - Na_4 P_2 O_7 = \alpha - Na_5 P_3 O_{10} + \alpha - Na_8 La_2 (PO_3)_8 O_3$ 

in which liquid C reacts with crystalline Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>. Crystalline Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub> and Na<sub>8</sub>La<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>O<sub>3</sub> are formed. The reaction proceeds in accordance with the phase rule. Below  $610^{\circ}$ , only two phases exist:  $\alpha$ -Na<sub>8</sub>La<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>O<sub>3</sub> and  $\alpha$ -Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>, crystallizing as glasses. The system was examined by thermal analysis, involving heating and cooling of the previously melted samples. The phase transitions Na<sub>8</sub>La<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>O<sub>3</sub> were reported in [10, 12].

Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub> occurs in two polymorphic modifications:  $\alpha$ -Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub> above 570° and  $\beta$ -Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub> below 520°. The high-temperature phase  $\alpha$ -Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub> is stabilized by Na<sub>8</sub>La<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>O<sub>3</sub>; it is thermodynamically unstable at lower temperatures. In this case we are dealing with a substitution transition which could be connected with an order-disorder transition. The phase-transitions  $\alpha/\beta$ -Na<sub>8</sub>La<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>O<sub>3</sub> (570-540°) and  $\alpha/\beta$ -Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub> give endothermic effects throughout the examined range. The phase transition  $\beta/\gamma$ -Na<sub>8</sub>La<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>O<sub>3</sub> at 400° produces a single, very strong exothermic effect for the whole range of compositions examined.

The thermal effects from the phase-transition  $\gamma/\delta$  -Na<sub>8</sub>La<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>O<sub>3</sub> at 280° are contained in the Na<sub>8</sub>La<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>O<sub>3</sub> richer part of the system. The samples in this system are hygroscopic, which makes their microscopic study difficult.

Na<sub>8</sub>La<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>O<sub>3</sub> exhibits typical wide multiplet bands in the range 400-560 cm<sup>-1</sup>, which are also observed in the spectrum of La<sub>2</sub>O<sub>3</sub>, and frequencies of the inherent vibrations of phosphate groups: 1099 cm<sup>-1</sup> (vs.) and 1150 cm<sup>-1</sup> (vs.). Na<sub>8</sub>La<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>O<sub>3</sub> crystallizes in the orthorhombic system, with the unit-cell parameters a = 8.96(4)Å, b = 9.35(8)Å, c = 12.29(7)Å. Table 1 gives the powder diffraction data for Na<sub>8</sub>La<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>O<sub>3</sub>.

\* \* \*

The author thanks Mrs. E. Dlugoszewska for technical assistance.

#### References

1 G. Huber, K. Syassen and W. B. Holzpfel, Phys. Rev. B, 15 (1977) 5123.

- 2 H. G. Danielmeyer and W. P. Weber, J. E. E. E. J. Quantum Electrons QE, 8 (1972) 805.
- 3 H. G. Danielmeyer, J. P. Jeser, E. Schönher and W. Stetter, J. Cryst. Growth, 22 (1974) 298.
- 4 Z. Huber, Angew. Chem., 50 (1937) 323.
- 5 K. R. Andress and K. Z. Wüst, Z. Anorg. Chem., 241 (1939) 196.
- 6 P. Partridge, V. Hicks and G. W. Smith, J. Am. Chem. Soc., 63 (1941) 454.
- 7 E. T. Turkdogan and W. R. Maddocks, J. Iron Steel Inst., 172 (1952) 1.
- 8 M. E. Lewina and A. E. Wolodina, Vestnik Moskov. Univ. Ser. II, 22 (1) (1967) 49.
- 9 J. Berak and T. Znamierowska, Roczniki Chemii, 46 (1972) 1697.
- 10 J. Kropiwnicka and T. Znamierowska, J. Solid State Chem., 73 (19980) 405-410.
- 11 P. Taylor, P. R. Tremaine and M. G. Bailey, Inorg. Chem., 11 (1979) 2947.
- 12 J. Kropiwnicka, Thesis, Wroclaw, November, 1986.

**Zusammenfassung** - Es wurde das Phasendiagramm NasLa<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>O<sub>3</sub> - Na<sub>5</sub>P<sub>3</sub>O<sub>10</sub>, welches einen Teil des ternären Systemes La<sub>2</sub>O<sub>3</sub> - Na<sub>2</sub>O - P<sub>2</sub>O<sub>5</sub> enthält, konstruiert. Das Oxyphosphat Na<sub>8</sub>La<sub>2</sub>(PO<sub>3</sub>)<sub>8</sub>O<sub>3</sub> kristallisiert rhombisch mit folgenden Gitterkonstanten: a = 8.96(4)Å, b = 9.35(8)Å, c = 12.29(7)Å.